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1 Introduction

Like many other researchers, we have previously found that blind
source separation using Independent Components Analysis (ICA)
can significantly improve classification performance in single-trial
brain signal classification. The following figure illustrates the data
presented by Hill et al. (2005) [Advances in Neural Information Pro-
cessing Systems 17, 569–576], in which auditory ERPs were classified
in a binary (left-vs-right) attention-based BCI.
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Note that, for 14 out of 15 subjects, the error rate drops significantly
and considerably (by 5–10%).
Here we present further quantitative results and a comparison of
different ICA variants by re-examining the left-vs-right-hand motor-
imagery data of Lal et al. (2004) [IEEE Trans. Biomed. Eng. 51,
1003–1010]. The previous authors’ methodology of auto-regressive
(AR) models, Support Vector Machine classifiers (SVMs) and Re-
cursive Feature Elimination (RFE) is retained, but here we illustrate
the improvements in classification error rate and feature elimination
that can be achieved by combining this with ICA.
The following spectrograms give a feel for what ICA can do in a
motor-imagery paradigm. Note that the µ bands have been isolated
into a smaller number of channels, and considerably denoised. In
particular the higher-frequency band (around 20 Hz) is now visi-
ble, whereas it could not be seen as target-correlated at all in the
individual electrode traces.
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2 EEG Input

• Data from Lal et al. (2004): Binary motor imagery paradigm
(left vs. right hand): 400 trials x 39 EEG channels x 5 sec-
onds.

• Analog band-pass filter 0.1–40 Hz, digitize at 256 Hz

• Digitally low-pass filter and downsample to 100 Hz

3 Analysis

repeat twice with different random seeds:

1 randomly split trials into 10 non-overlapping test folds

for each fold:

with training fold:

2 Concatenate trials to form 39 long time series. Com-
pute ICA demixing matrix using every 10th time sample.
Demix channels into independent components (ICs). Cut
the time series up into trials again.

3 Fit least-square forward-backward linear AR model of or-
der 4 to each IC.

4 Train linear ν-SVM on the 39x4 coefficients, optimizing
ν in {0, 0.1, . . . , 0.9} by cross-validation with 10 sub-folds.

5 Perform Recursive Independent Component Elimination
(i.e. Recursive Feature Elimination with one whole IC
eliminated at each step) on all training data to obtain a
rank order of ICs.

6 Cross-validate RICE with 10 sub-folds to obtain esti-
mated error rates for each number of ICs.

7 Find the lowest number of ICs at which the CV error is
within 2 standard errors of the minimum.

8 Reduce number of ICs to this number, taking them in
the rank order obtained in step 5.

9 Re-optimize ν to produce final trained classifier for this
fold.

end with

with test fold:

10 Apply ICA separating matrix computed from training
fold.

11 Retain only the ICs selected by RICE in step 8.

12 Compute AR coefficients.

13 Test trained classifier on test fold and record test error
(final error).

14 Also record test error estimates during step 5 (elimina-
tion error trace).

end with

end for

end repeat

4 Output

• Final error score from step 13 (averaged across 2x10 test
folds): an estimate of the potential online performance of
the algorithm.

• Elimination error traces from step 14 (also averaged across 20
folds): the minimum of this curve gives the error that might
be obtained online if the algorithm knew exactly how many
ICs to select (which it does not, but the shape of the curve
is instructive).
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5 Example results: elimination error

traces
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6 Example results: consistency of ICA

separation

The following contrast illustrates how, depending on the subject,
some ICA algorithms are more consistent than others. In each of
the 20 different folds (left to right), the ICA algorithm sees a slightly
different subset of the input. For the best subjects (3 and 4), it is
remarkable how much more consistent the mixture weights are across
folds when InfoMax ICA is used, as opposed to any of the other ICA
variants tested. The figures below show the 2 top-ranked ICs from
each fold (hence, two rows in each).
Subject 4, FastICA (pow3)—consistency score = 0.33:

Subject 4, InfoMax ICA—consistency score = 0.59:

7 Overview of results

The charts to the right com-
pare the performance of differ-
ent ICA algorithms, which dif-
fer according to the contrast

function they use to define in-
dependence. The algorithms
are colour-coded as shown.
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FastICA (tanh)  −− Hyvarinen

InfoMAX −− Makeig

JADE −− Cardoso

KDICA −− Chen (to appear)
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• For most subjects and all ICA variants, ICA improves perfor-
mance considerably (up to 97% correct). Our claim in the submit-
ted abstract, that InfoMax is significantly better than the others
in this respect, is erroneous and was based on a preliminary sub-
set of the data. Over all performance measures, however, InfoMax
compares very favourably with the others.

• Depending on subject and ICA variant, ICA interacts more or less
consistently with Recursive Feature Elimination. For example, for
subject 4, FastICA (gauss) results in exactly 2 ICs being selected
on every fold, whereas for JADE or FastICA (pow3), the number
selected is very variable.

• Again depending on subject, ICA variants can be differentially
sensitive to variation in the signal subsample. InfoMax returns
remarkably consistent mixture weightings, at least for the better
subjects, and therefore yields potentially the most interpretable
results.

• Independence between time-shifted signals was not considered.
Preliminary results with a variant of SOBI (not shown) have so far
been very poor, but comparison with established good performers
such as TDSEP will be interesting.


